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Characterization of Stochastic Bifurcations in a Simple
Biological Oscillator
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This study of the effect of noise on bifurcations in a simple biological oscillator
with a periodically modulated threshold uses the first-passage-time problem of
the Ornstein-Uhlenbeck process with a periodic boundary to define the
operator governing the transition of a threshold phase density. Stochastic phase-
locking is analyzed numerically by evaluating the evolution of the probability
density function of the threshold phase. A firing phase map in a noisy environ-
ment is extended to a stochastic kernel so that stochastic bifurcations can be
investigated by spectral analysis of the kernel.

1. INTRODUCTION

One of an organism's biological rhythms can be influenced by that
organism's other rhythms and by external rhythms in the environment.
Interaction between the rhythms can lead to an entrainment, or syn-
chronization, and the rhythms will thus lock into a fixed phase relation.
Any physical system in the real world is always affected by small stochastic
fluctuations, such as those due to thermal noise, and the main objective of
the work described in this paper was to study the effect of noise on the syn-
chronization and phase-locking of biological rhythms.

One approach to the analysis of stochastic bifurcations is to observe
qualitative changes of stationary probability densities. Transitions of
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topological structures—for instance, changes in the number of peaks in
stationary densities—have been analyzed experimentally and numeri-
cally(1) Those transitions are called phenomenological bifurcation.(2)

This paper takes a different approach to stochastic bifurcations.
Grasman and Roerdink(3) studied the van der Pol type of relaxation
oscillators with stochastic perturbations and explored the probability dis-
tribution function of the oscillation period by using a one-dimensional
stochastic process. Tateno et al(4) applied their method to a periodically
forced van der Pol relaxation oscillator with an additive term. Doi et al(5)

used a spectral analysis of stochastic kernels to quantitatively characterize
changes of the bifurcations in the invariant probability density functions. In
this paper their approach is used for characterizing stochastic bifurcations,
and the bifurcations of probability density are examined numerically.

Many rhythmic biological activities have been modeled by variously
realistic oscillators, and one of the simplest is the integrate-and-fire model.
Several versions of the model have been used to investigate rhythmic
activities such as mitosis(6) the activity of cardiac pacemaker cells(7) and
the firing of pacemaker neurons(8) The neural integrate-and-fire model
describes the membrane potential across a leaky, current-clamped mem-
brane in terms of a state variable.

In each model an activity rises monotonically toward a threshold.
When this threshold is reached, an "event" occurs—in a neural model, the
event represents the firing of the neuron or the occurrence of a spike—after
which the activity decays to a lower value. In present work this decay is
assumed to be instantaneous and discontinuous.

The interaction between rhythms has previously been investigated by
using integrate-and-fire models into which a time-vary ing (specifically,
a periodic) modulation has been incorporated in one of two ways. In one
kind of model the threshold is subjected to a time-varying modulation and
there is no forced term(9) In the other kind the activity is modulated by a
forced term and the threshold is held constant(10) The response charac-
teristics of both kinds of models have been studied in detail, and this paper
deals with the former kind in noisy environments. It also investigates the
effect of an additive noise analytically and numerically.

In this paper the firing phase map used to analyze phase-locking
patterns is first defined in a deterministic case and is then extended to a
stochastic case in a noisy environment. That is, a stochastic kernel is
defined. An operator derived from the stochastic kernel is then defined and
used to analyze the evolution of the model responses in the parameter
space. Stochastic bifurcations are characterized numerically by applying a
spectral analysis to the kernel.
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2. DETERMINISTIC RESPONSE CHARACTERISTICS

2.1. Integrate-and-Fire Model

Assume that the state point x(t) increases to a threshold P ( t ) and is
governed by the following first-order differential equation:

where both T and B are parameters. Also assume that

where x0 is an initial point. Once the state point reaches the threshold, it
instantaneously and discontinuously resets to zero, and the process repeats:

Let the threshold be time-varying and periodically modulated in such a
way that the state point can become synchronized to the threshold. In par-
ticular, let the threshold P ( t ) be sinusoidally modulated with time:

where T 0 eC ( = [0 1)) is the initial phase and the parameter k is the
amplitude of the modulation. Note that in Eq. (4) the period and the mean
amplitude of the threshold have been set to 1 because dimensionless
parameters and variables are designated by normalization. Hence the
parameter r is the ratio of the frequency of the periodical modulation of
the threshold to the frequency of the autonomous oscillator governed by
Eq. (1). After the state point reaches the threshold, it instantaneously resets
to zero and restarts its growth according to Eq. (1).

Before the state point reaches the threshold for the first time, the state
variable x(t) is a solution of Eqs. (1) and (2):

In the following we will assume that the initial value X0 = 0. For the state
point to reach the threshold the condition

must be satisfied.
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When the state point of Eq. (1) reaches the threshold N times for
every M cycles of the periodical threshold modulation, we will call the
response pattern a M:N phase-locking. Figure 1 shows three examples of
phase-locking patterns: 2:1, 1:1, and 1:2 phase-locking responses.

Although this paper will treat only M:N (M< N) phase-locking cases,
in specifying the parameter space it is often useful to make a calculation of
deterministic phase-locking regions. Numerical and analytical methods like
those used in refs. 9 and 10 are used in Appendix A to evaluate the M: 1
phase-locking regions.

2.2. Deterministic Firing Time Maps

Responses of this model can be described by a sequence {tn}
(n= 1, 2,...), where tn is the time at which the state point has reached the
threshold n times. Call such a sequence the firing time and suppose that tn„
and tn +1 are successive firing times. Then the map f: tn-> tn+1 can be
obtained by solving the equation

when

where the functions F(t) and G(t) are defined by

If the function F(t] is invertible and F 1 is defined in the range of G(t),
Eq. (7) can be rewritten

where

In the parameter space (C, B , k ) there are three regions in which we
can find response patterns that may or may not be phase-locked.(10)

Region I. CB— 1 >k ^/1 +(2PC)2. In this case F(t) is an invertible
and monotonically increasing function, so f ( t ) of Eq. (12) is well defined.
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Fig. 1. Phase-locking patterns for the integrate-and-fire model with a sinusoidal threshold
modulation, (a) 2:1 phase-locking, C=12.8, B = 2.0, and k = 0.05; (b) 1:1 phase-locking,
C = 0.63, B = 2.0, and k = 0.4; (c) 1:2 phase-locking, C = 0.51, B = 2.0, and k = 0.5. The
parameter C (defined in Section 2) represents the ratio of the frequency of the sinusoidal
threshold modulation to the natural frequency of the unperturbed oscillator, and the
parameter k is the amplitude of the threshold modulation.
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Fig. 2. The k — r plane for a fixed parameter B = 2. The parameter space can be divided into
three regions according to the behavior of variable x(t). In Region I we can find both quasi-
periodic behavior and phase-locking patterns, but in Region II we cannot find quasi-periodic
behavior. For the parameters in Region III the oscillating process will terminate.

In Region I the model behavior which does not correspond to phase-
locking patterns is called quasi-periodic.

Region II. k^/1 + (2PC)2> |CB— 1|. In this case the function F(t) is
not invertible, but the map f: tn->tn +1 can still be defined from Eq. (7)
if tn + 1 is specified to be the smallest solution of Eq. (7) which is greater
than tn. In this region occurs a type of behavior quantitatively different
from that occurring in Region I: the set of the parameter space in which the
dynamical behavior does not correspond to phase-lockings is of measure
zero.(10)

Region III. 1 -CB>k,/1 +(2PC)2. In this region the function F(t)
is negative in the range of G and its relative maxima decrease as t increases.
This means that the firing process defined by Eq. (1) terminates.

The parameter space can thus be divided into three distinct regions,
which for the parameter B = 2 are shown in Fig. 2.

2.3. Deterministic Firing Phase Maps

In this subsection a firing phase map is defined as a mapping from the
phase of the threshold at one firing time to that at the next firing time. For
a time interval teR and y 0 e C , a phase y1 e C is defined as follows:
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The notation t + y(mod 1) means t + y — n, where n is the largest integer
such that t + y — n >0. Suppose that the firing occurs at a threshold phase
T0 and that the next firing takes place after the time interval t1,. Then the
next phase T1 can be written

Fig. 3. Two examples of firing phase maps obtained numerically. Both graphs show {0n}
(n= 101,..., 150) after 100 iterations of an initial phase, (a) a 1:2 phase-locking occurs, and
after several iterations two phases 0* and 0** repeat in turn. k = 0.5, C = 0.51, and B = 2.
(b) quasi-periodic behavior. k = 0.1, C = 0.51, and B = 2.
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If a phase-locking occurs for an initial condition, the sequence {Tn}
(n> N) has a periodicity for a large natural number N.

Two examples of firing phase maps obtained numerically are shown
in Fig. 3, and the dependency of phase-locking on the parameter k is illus-
trated in Fig. 4.
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Fig. 4. Bifurcation diagram showing the dependency of phase-locking on the parameter k.
The firing phase sequence {01000,..., 01100} is illustrated. For a 1:2 phase-locking region, fixed
phase relations are represented by two dots for each k value even though 101 points are
actually concentrated on each of the two points. Since there is no such fixed phase relation
for quasiperiodic cases (in the parameter range 0 < k < 1.7), the dots are scattered throughout
the phase domain spanning the interval [0 1). C = 0.51 and B = 2.

3. STOCHASTIC PHASE-LOCKINGS AND BIFURCATIONS

3.1. Stochastic Integrate-and-Fire Model

Now consider a system of a stochastic differential equations described
by

682

and

instead of Eqs. (1) and (2). Here W(t) denotes the standard Wiener process
and represents an additive noise, which means that it is independent of the
state variable X(t), and the constant d is a noise intensity. The time-
dependent threshold is the same as that given by Eq. (4):

The state point governed by Eqs. (16) and (17) is reset to zero as soon as
the point reaches this time-varying threshold.
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The problem of finding the time interval when the oscillator with an
additive noise reaches the threshold is reduced to the first-passage-time
problem of the Ornstein-Uhlenbeck process with a time-varying boundary.
Making use of the probability density functions (pdfs) of the first-passage-
time, we can define a stochastic firing phase map, referred to in this case
as a stochastic kernel, and an operator that governs the transition of the
threshold phase density after the oscillator reaches the threshold. Phase-
lockings in a stochastic sense can then be investigated on the basis of the
density evolution of the operator.

The rest of this subsection gives some definitions necessary for the
following discussion. By L1(C) shall be denoted the class of functions f on
the circle C such that

Then ||f|| is the L 1 (C) norm of f As is customary, we will say that
heL1(C) is a density if h is non-negative and its integral over the domain
C is equal to unity. Let the set & of pdf's be defined by

Denote by Tg a time interval when the one-dimensional stochastic
process X(t) reaches the time-varying threshold P ( t ) for the first time after
leaving an initial point X(0) = 0 with an initial threshold phase Te C. The
time interval Tg is a random variable representing a first-passage-time from
the state point X ( 0 ) = 0 to the threshold P ( t ) .

Let fT(t; 0) be the first-passage-time probability density function of a
process X(t) with an initial state X(0) = 0 and with an initial threshold
phase 0 e C:

From the above definition, we know that

Since Eq. (16) implies that X(t) is the Ornstein-Uhlenbeck process,2 the
numerical procedure proposed by Buoncore et al.(11) can be used to com-
pute the first-passage-time pdf in the case of a time-dependent boundary.

2 Strictly speaking, the random varialble X(t) of Eq. ( 1 6 ) is not the Ornstein Uhlenbeck
process because it contains an additive drift term B.
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3.2. Stochastic Kernels and Operators

To describe the motion of a state point in terms of the phase of the
threshold, we can transform the pdf of the first-passage-time T into that of
the threshold phase as follows: for T0 e C,

where n ' ( t ; T) means d n ( t ; 0)/dt. The pdf g(T | T0) of the variable 0 describes
the transformation probability of a given threshold phase 00. Hence, a map
V:00->0 whose transformation pdf is subjected to g(0 | 00) corresponds to
a deterministic firing phase map n in a stochastic sense.

Now let the initial boundary phase T0 be distributed on C according
to a probability density function h 0 (T 0 ) e@. After a state point reaches the
threshold, the pdf of the threshold phase h 1 (T ) is described by

or h1 = Sfh0 , and h1 e @>, where ^": .@ -> £2 is an integral operator defined by

For any given pdf h0 we can make use of the operator Sfi to define hn

(n = 1, 2,...) inductively:

If & is the operator defined above and if

for some h*e@>, then h* is called an invariant density of the operator &>.
We can now define the asymptotic stability of a sequence of density func-
tions {^"h0} in the following way. For every h0eD, a sequence {pnh0} is
said to be asymptotically stable if there exists a unique invariant density h*
and
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From the definition of g(T| T0) , we know that the inequality for a>0
and a e C,

holds.(5) Therefore, the sequence {pnh0} is asymptotically stable
(Corollary 5.7.1 in ref. 12).

Also from the definition of g(T | T0) we know that this function of the
operator satisfies the conditions

and

That is, g ( T | 0 0 ) e & (c.f., Eq. (20)). A function of an operator satisfying
Eqs. (30) and (31) is, in general, called a stochastic kernel.(12) Even in the
deterministic case the kernel k(T, T0) can be formally defined by using a
delta function S(-) and a firing phase map n of Eq. (15):

In general, if a kernel K(x, y) satisfies Eq. (30) and Eq. (31) for
x, y e C, the eigenvalues and eigenfunctions of K(x, y) can be found. The
eigenfunction problem for a K(x, y) is to find eigenvalues A and eigenfunc-
tions £,( •) satisfying

For any stochastic kernel K the following results are known.(13)

KI. L=1 is an eigenvalue for K, and all eigenvalues A satisfy

KII. If £( •) is an eigenfunction of K with the eigenvalue |L| = 1, then
!£(•)! is the eigenfunction with the eigenvalue 1.

KIII. If there is an eigenfunction of K with eigenvalue |L| = 1 and
there is no degeneracy for the eigenvalue 1, there is an integer N such that



LN — 1. This means that all eigenvalues of absolute value 1 are Nth roots
of unity.

These properties are discussed in the following subsection, where a
transition probability matrix replaces a stochastic kernel.

Even if we do not derive the analytical form of the kernel of g(T |T0) ,
we can study the characteristics of the kernel numerically. The two examples
of numerically calculated stochastic kernels illustrated in Fig. 5 correspond
to the deterministic firing maps in Fig. 3. One is a 1:2 phase-locking kernel,
and the other is a quasi-periodic kernel.

The following section provides some examples of pdf evolutions whose
densities are asymptotically stable and discusses the stochastic phase-
lockings in terms of pdf evolutions. Figure 6 shows two examples of pdf
evolutions (h1, h2, h3 and h*) from a uniform initial distribution (h 0 ) . The
stochastic kernels in Fig. 5 were used in calculating these evolutions, and
the pdf h* represents function h10000 because the exact invariant density in
these cases cannot be calculated.

3.3. Markov Chains

The previous section observed the transition of a state point indirectly,
through the pdf's evolution, given an initial phase density of the firing
threshold phase. This section takes a direct look at a movement of a state
point Tn on C at a time step «.

We can first define a state space, denoted by {S i,} (i= 1,..., Ns), which
is a finite set of equal disjoint intervals on C:
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For simplicity, state Si,- shall be identified with state i. We can refer to the
values of Yn as the position of a state point at a time step n and it is
customary to speak of Yn being in state i if Yn = i, which means that a state
point On is in state Si at n.

Before analyzing of the transition probability matrix of a Markov
chain, we should consider some general properties of a stochastic matrix. If
all the elements in a real square matrix A are non-negative (or positive)
and the sum of all the elements in each column is unity, that is, if



Stochastic Bifurcations in a Simple Biological Oscillator

Fig. 5. Numerically calculated stochastic kernels g(0 n + 1 , | 0) corresponding to the deter-
ministic tiring maps in Fig. 3. (a) a stochastic kernel corresponding to a 1:2 phase-locking in
the deterministic case: k = 0.5, C = 0.51, B = 2, and (5 = 0.2. (b) a quasi-periodic stochastic
kernel: k = 0.1, C = 0.51, B = 2, and <J = 0.2.
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then A is called a stochastic matrix.(14) As a matter of convenience, suppose
that characteristic values {Li} (i = 0, 1,..., Na— 1) of A are sorted in
descending order according to their moduli:

A stochastic matrix has the following specific properties:

AI. If a stochastic matrix is irreducible, it has a real and positive
characteristic value 1 which is a simple root of the characteristic equation.
No characteristic value has a modulus greater than 1.

AII. To the maximal characteristic value 1 there corresponds a
characteristic vector with positive coordinates.

AIII. If A has k characteristic values L0= 1, L1,L2,..., Lk_1 of
modulus 1, then these numbers are all distinct and are roots of the equa-
tion

More generally, the whole spectra L0, L1; L2,.-, Lk_1 of A, regarded as a
system of points in the complex A-plane, goes over into itself under a rota-
tion of the plane by the angle 2n/k. The properties AI, AII, and AIII
respectively correspond to KI, K.II, and KIII.

In our case, the transition probabilities are completely determined by
a stochastic kernel g ( T | T 0 ) . That is,

The transition probabilities pij{n,n+1} ( i , j=1, . . . ,Ns) are independent of
the values n and n + 1, pij{n,n+1} (i,j=1,...,Ns) and P = (pij) is a
stochastic matrix.

We know from Eq. (29) that all elements of the transition probability
matrix P are positive:

Therefore any two states i and j communicate: the process is thus
irreducible (more precisely, the process is primitive because all elements of



P are possitive). All states then communicate with each other, and P has
only one recurrent class. Since the transition probability is that of a finite
Markov chain with period 1, the process is also aperiodic. It is also known
that if a finite Markov chain is irreducible and aperiodic, it has a unique
invariant (or stationary) probability distribution n = (n1,..., nN) . ( 1 5 , 1 6 )

As mentioned above, a stochastic matrix in general has the charac-
teristic value 1, and so does the transition probability matrix P. The

Fig. 6. Examples of pdf evolutions (h1, h2, h3 and h*) from a uniform initial distribution
( h o ) . Each stochastic kernel in Fig. 5 is used, and both evolutions are asymptotic stable cases.
The pdf h* represents a function h10000 because the exact invariant density in these cases
cannot be calculated, (a) evolution corresponding to a 1:2 phase-locking in the deterministic
case: k = 0.5, C = 0.51, B = 2, and <5 = 0.2. (b) evolution corresponding to a quasi-periodic
behavior in the deterministic case: k = 0.1, C = 0.51, B = 2, and <5 = 0.2.

Stochastic Bifurcations in a Simple Biological Oscillator 689
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multiplicity of the characteristic value 1 is, in this case, unity because it is
equal to the number of recurrent classes associated with the finite Markov
matrix P. Furthermore, since the transition probability matrix P is a finite
irreducible aperiodic Markov chain, according to Theorem 3.2 in Chapter 4
of ref. 16, there are no other characteristic values of modulus 1 except for
unity (L0= 1). This means that the matrix P does not have roots of the
equation Lk — 1 = 0 except for A = 1.

Fig. 7. Characteristic vectors (eigenfunctions) which belong to the characteristic value L0 = 1
of each kernel in Fig. 5. These functions are coincident with the invariant densities (h*)
illustrated in Fig. 6. (a) the stochastic kernel corresponding to a 1:2 phase-locking in the
deterministic case. k = 0.5, C = 0.51, B = 2, and <5 = 0.2. (b) a stochastic quasi-periodic kernel:
k = 0.1, C = 0.51, B = 2, and (5 = 0.2.
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4. NUMERICAL ANALYSIS

4.1. Spectral Analysis of Stochastic Kernels

The integral operator & governs evolution properties of a sequence
{hn}, and a kernel g of the operator has all the information needed to
describe the dynamical evolution. This section therefore analyzes the spec-
tral properties of the kernel: eigenfunctions and eigenvalues. For a

Fig. 8. Examples of the whole spectrum of characteristic values of the stochastic kernels are
illustrated in the complex plane. Each of the kernels has a unique characteristic value L0 = 1.
(a) a stochastic kernel corresponding to a 1:2 phase-locking in a deterministic case: k = 0.5,
C = 0.51, B = 2, and <5 = 0.2. (b) a stochastic quasi-periodic case: k = 0.1, C = 0.51, B = 2, and
(5 = 0.2.
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stochastic kernel g we can obtain a numerical representation denoted by a
square matrix M = ( m i J ) (i, j=1,..., Nm). We should note, however, that
from a numerical point of view Eqs. (36) and (37) are not actually satisfied.
Some mij (i, j=1,..., Nm), for instance, may be zero and some Enj=1mij
(i= 1, 2,..., Nm) may not be exactly unity. Note that the speed of the con-
vergence of the sequence {hn} to its invariant density is determined by the
characteristic values other than the first characteristic value (L0 = 1). There-
fore, since several of the following characteristic values play an important
role, we should pay particular attention to the second and third charac-
teristic values.

Figure 7 shows two characteristic vectors which belong to the first
characteristic value of each kernel in Fig. 5, and these functions are coinci-
dent with the invariant densities illustrated in Fig. 6. Hence, the following
part of this paper uses as the invariant density the characteristic vector
(eigenfunction) of the first characteristic value of the matrix M.

Fig. 9. (a) Invariant density diagram for a noise intensity (5 = 0.1 and corresponding to the
deterministic bifurcation diagram in Fig. 4: C = 0.51 and B = 2. Invariant densities h* are
plotted for each of 90 equally spaced k values on the interval [0.05 0.95]. (b) the second and
third characteristic values' moduli versus k. (c) the second and third characteristic values'
angles versus k.
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In Fig. 8 two examples of the whole spectrum of characteristic values
of the kernel of an operator 9 are shown in the complex plane for
Nm = 100. Each of the operators has a unique characteristic value L0= 1.
Parts (a) and (b) respectively correspond to the deterministic 1:2 phase-
locking and quasi-periodic cases, and each stochastic kernel is the same as
that corresponding part of Fig. 5.

Figures 9 through 12 show, for various noise intensities (<5 = 0.1, 0.36,
0.37, and 1.0), the invariant density diagram (which corresponds to
stochastic bifurcation diagram in ref. 5) as well as of the moduli and angles
of the second and third characteristic values (L1, and L2) plotted against k.

Fig. 9. (Continued)
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The structure of the invariant density diagram with the noise intensity
6 = 0.1 (Fig. 9) looks like that of the diagram for the deterministic case (c.f.,
Fig. 4). We can see that near k = 0.19 the second and third characteristic
values change from complex to real. This implies the bifurcation from the
quasi-periodic behavior to 1:2 phase-locking occurs in a stochastic sense.
We refer to the point at which this happens as the stochastic bifurcation
point. Near k = 0.63, on the other hand, the Values change from real to
complex. In the parameter range 0.19<k<0.63, the angle of the charac-
teristic values is exactly n radians. Note that each invariant density func-
tion has the same topological structure, with two peaks in this parameter
range (c.f., Fig. 7(a)). As the parameter k increases beyond this range the
angles of the second and third characteristic values depart from each other.
We can see that around k = 0.8 two characteristic values are almost
invariant under rotation through an angle of 2n/3 in the complex plane.
This constancy implies that this is a case of stochastic 1:3 phase-locking.

Comparing parts (b) and (c) of Figs. 9 and 10, we find that the point
of bifurcation from stochastic quasi-periodic behavior to stochastic 1:2

Fig. 10. (a) Invariant density diagram for a noise intensity S = 0.36 and corresponding to the
deterministic bifurcation diagram in Fig. 4: C = 0.51 and B = 2. Invariant densities h* are
plotted for each of 90 equally spaced k values on the interval [0.05 0.95]. (b) the second and
third characteristic values' moduli versus k. (c) the second and third characteristic values'
angles versus k.



Stochastic Bifurcations in a Simple Biological Oscillator 695

phase-locking shifts leftward as the noise intensity increases. In Fig. 11
there are no real second or third characteristic values (L1 and L2) in the
entire range of the parameter k. Though the topological structures of the
invariant density diagrams in Fig. 10(a) and Fig. 11 (a) do not seem to be
greatly different from each other, we can find the quantitative change by
making use of the spectral analysis.

As the noise intensity increases, the structure of the invariant density
diagram becomes flatter and there are no real second and third charac-
teristic values when the noise intensity is high (Fig. 12).

Fig. 10. (Continued)
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Fig. 11. (a) Invariant density diagram for a noise intensity S = 0.37 and corresponding to the
deterministic bifurcation diagram in Fig. 4: C = 0.51 and B = 2. Invariant densities h* are
plotted for each of 90 equally spaced k values on the interval [0.05 0.95]. (b) the second and
third characteristic values' moduli versus k. (c) the second and third characteristic values'
angles versus k.

4.2. Transition Probability Matrix

The transition probability matrix of a Markov process, and hence the
process itself, can be graphically represented by a transition diagram formed
of nodes and directed line segments called branches. Each node is num-
bered to represent one state i (i= 1,..., Ns) of the process. A directed line
segment (branch) is drawn from each node i to each node j. Furthermore,
since we have seen that all the elements of the transition probability matrix
P of Markov chains are positive, we shall consider a diagram showing only
those directed line segments with transition probabilities pijk ( i=1,. . . ,Ns,
k = 1,..., w(i)) for which the following equations hold for each i:
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Fig. 11, (Continued)

This diagram will be called a pseudo-transition diagram. Because the row
elements of the matrix with segments satisfying Eqs. (42), (43), and (44)
sum to more than 0.95, the numbers on all the branches leaving a node
must also sum to more than 0.95.

Consider pseudo-transition diagrams (not shown here) in which the
unit circle C has been divided into 10 states (i.e., Ns = 10) and which
correspond to the stochastic kernels in Fig. 5. If the parameters correspond
to a deterministic 1:2 phase-locking case, the invariant density of the
operator 3P has sharp peaks in states 4 and 7 (c.f., Fig. 6(a)), and all states
move to the two states in high transition probabilities. On the other hand,
if the parameters correspond to a deterministic quasi-periodic case, each
state tends to transit to its diagonal states. Thus there are no sharp peaks
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Fig. 12. (a) Invariant density diagram for a noise intensity <5= 1.0 and corresponding to the
deterministic bifurcation diagram in Fig. 4: C = 0.51 and B = 2. Invariant densities h* are
plotted for each of 90 equally spaced k values on the interval [0.05 0.95]. (b) the second and
third characteristic values' moduli versus k. (c) the second and third characteristic values'
angles versus k.

in the invariant density (c.f., Fig. 6(b)). In Fig. 13, for Ns= 10 two exam-
ples of the whole spectrum of characteristic values (L0,..., L9) of transition
matrices are shown in the complex plane. In this figure each of the matrices
has a unique characteristic value L0= 1 and parts (a) and (b) respectively
correspond to the stochastic 1:2 phase-locking and stochastic quasi-peri-
odic kernels of Fig. 5. Comparing this figure with Fig. 8 (for stochastic
kernels), we find that the configurations of the first several characteristic
values in the corresponding parts of the two figures are quite similar.

5. DISCUSSION

The integrate-and-fire type oscillator with a periodic threshold is one
of the simplest models of biological oscillators but is nonetheless very use-
ful when we want to analyze the stochastic aspects of the dynamical
structure of biological oscillations. This paper quantitatively evaluated
stochastic bifurcations and phase-lockings by exploiting a spectral analysis
of stochastic kernels. This method makes it clear that the locations of
stochastic bifurcation points in the parameter space depend on the noise
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intensity. Moreover, the method is easy to apply because the numerical
calculation it uses does not require the solving of stochastic differential
equations. "Noisy" nonlinear dynamical systems have recently received
attention, and the method used in this paper should be extended to other
nonlinear systems.

APPENDIX A. PHASE-LOCKING REGIONS

To determine the boundary of the M: 1 phase-locking regions, we look
for phase-locked solutions of Eq. (7). Because the critical cases can occur

Fig. 12. (Continued)
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Fig. 13. Examples of the whole spectrum of characteristic values for the transition probabil-
ity matrices are shown in the complex plane. Each of the matrices has a unique characteristic
value L 0 = l . (a) a 1:2 phase-locking parameters in the deterministic case: k = 0.5, C = 0.51,
B = 2, and <5 = 0.2. (b) a stochastic quasi-periodic case: k =0.1, C = 0.51, B = 2, and (5 = 0.2.
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on the boundary of these regions, we need to find solutions of Eq. (7) that
satisfy tn + 1 = tn + M and that disappear when arbitrarily small changes of
parameter values are made.

If the function F is monotonic—that is, when CB — 1 > k ^/1 + (2m)2

(Region I)—and the function / of Eq. (12) is continuous. Roots of the
equation

can disappear only in pairs when two roots coalesce. Thus a critical case
occurs when

Since

by deleting the function G(t) from the conditions specified by Eqs. (45) and
(46), we can reduce them to

By straightforward elimination we find that

Substituting Eq. (50) for Eq. (45), we find

It is now convenient to introduce a constant CO such as

if CBN> 1. This constant is equal to CO = C/t*, where t* satisfies
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The t* is the time the state point reached a time-invariant threshold
(P( t ) = 1 for the first time.

Using TO we can rewrite Eq. (51) as

The second critical case occurs when the F(t) is not monotonic—when
k^/1+ (2mC)2 > |CB — 1| (Region II). Fixed points of the mapping Eq. (7)
can then be lost because of the discontinuity. Thus a critical case occurs
when Eq. (7) holds and F'(tn) = 0. When a root moves to the right into the
discontinuity, these two conditions give us the critical curves bounding the
phase-locking region:

Fig. 14. Phase-locked regions in the (C/CO, k) space for a fixed parameter B = 2. The border
of the M:1 phase-locking patterns (indicated by the solid line) was computed by using
Eq. (51) in Appendix A. Within this M:1 phase-locked region the dashed line computed by
using Eq. (55) separates the region in which there is one solution (above the dashed line) from
the region in which there are two solutions (below the dashed line).
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If a root of Eq. (7) disappears into the discontinuity from the right, there
are smaller values (t*, tn +1 — 1 <t* <tn + 1) for which

These conditions cannot be solved analytically, so what is plotted in
Fig. 14 is their numerical solution.

In the regions between the 1:1 and 2:1 regions there are variety of
other patterns (3:2, 4:3, 5:3, and so on), and there are in fact an infinite
number of stable phase-locking patterns in regions of the parameter space
between any two phased-locked regions.(10) Numerical studies also indicate
that the firing patterns in phase-locked regions are independent of the
initial conditions.(9)

APPENDIX B. NUMERICAL EXAMPLES OF THE TRANSITION
PROBABILITY MATRIX AND THE INVARIANT
DENSITIES

The transition probabilities that describe a Markov process are
represented by an Ns-by-Ns transition matrix P with elements pij. Examples
of the matrices in Section 4 can be calculated numerically for Ns= 10. For
k = 0.5, (5 = 0.2, C = 0.51, and B = 2, we have

where * represents a number less than 0.001. And for k = 0.1, <5 = 0.2,
C = 0.51, and B = 0.51, we have
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In these cases the invariant densities ;t are respectively

P = (* * 0.024 0.282 0.172 0.023 0.328 0.134 0.034 0.004)

and

7t = (0.075 0.087 0.107 0.118 0.111 0.105 0.113 0.111 0.094 0.078
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